
Recent Advances in
Analysis of HMAC

Jian Guo
Nanyang Technological University, Singapore

22 Dec, ASK 2014 @ Chennai, India

1

Overview

‣ Introduction to HMAC

‣ Pollard Rho Method and Functional Graph

‣ Distinguishers, Forgeries and Key Recovery Attacks

‣ Applications to HMAC-Whirlpool

2

Introduction to MAC
Message Authentication Code (MAC) is a short string used to provide
integrity and authenticity.

1. Alice and Bob share a key k

2. Bob sends t = MACk(M), and M

3. Alice receives (M*, t*), she computes t’=MACk(M*)

4. Alice checks if t* = t’, and confirms the message M* is consistent
with M, i.e., M* = M, and it was indeed from Bob

3

 , t AliceBob

MAC constructions

‣ Dedicated designs
- Pelican-MAC, SQUASH, SipHash

‣ From universal hash functions
- UMAC, VMAC, Poly1305

‣ From block ciphers
- CBC-MAC, CMAC, OMAC, PMAC

‣ From hash functions
- HMAC, Sandwich-MAC, Envelope-MAC

4

Introduction to HMAC

‣ Designed by Mihir Bellare, Ran Canetti and Hugo
Krawczyk at CRYPTO 1996

‣ Standardized by ANSI, IETF, ISO, NIST from 1997

‣ The most widely deployed hash-based MAC
construction, implemented in SSL, TLS, IPSec, etc.

5

NMAC construction

‣ 2 Independent Keys

‣ Proven security up to 
with for internal state
size

6

h

h Tag

Kin

K
out

M

2l/2

l

HMAC construction

‣ Based on NMAC,
generate inner and outer
keys from a single master
key K

‣ Security bounds remain
the same as for NMAC

7

Tagh

Kin

K
out

h

M

IV

K � ipad

C

IV

K � opad

C

Attack Models against MAC
‣ Distinguishers

- Distinguishing-R: distinguish the MAC function from random oracle

- Distinguishing-H: distinguish a MAC instantiated with some hash function from a
MAC instantiated with a random function.

‣ Forgeries: given one or more valid (Mi, ti) pairs, attacker shows another
valid pair (Mj, tj) where Mj has never been queried.

- Existential Forgery: attacker controls both provided message Mi’s and the forged
one Mj

- Selective Forgery: forgery applies to a pre-selected message set of Mi’s

- Universal Forgery: forgery applies to any message Mi

‣ Key Recovery: forgery at will, impersonate and more….

- Master key or equivalent keys

8

Results in last 3 years
1. Thomas Peyrin, Yu Sasaki, Lei Wang: Generic Related-Key Attacks for HMAC.

ASIACRYPT 2012

2. Gaëtan Leurent, Thomas Peyrin, Lei Wang: New Generic Attacks against Hash-
Based MACs. ASIA CRYPT 2013

3. Jian Guo, Yu Sasaki, Lei Wang, Shuang Wu: Cryptanalysis of HMAC/NMAC-
Whirlpool. ASIACRYPT 2013

4. Thomas Peyrin, Lei Wang: Generic Universal Forgery Attack on Iterative Hash-
Based MACs. EUROCRYPT 2014

5. Jian Guo, Thomas Peyrin, Yu Sasaki, Lei Wang: Updates on Generic Attacks
against HMAC and NMAC. CRYPTO 2014

6. Itai Dinur, Gaëtan Leurent: Improved Generic Attacks against Hash-Based MACs
and HAIFA. CRYPTO 2014

7. Jian Guo, Yu Sasaki, Lei Wang, Meiqin Wang, Long Wen, Equivalent Key Recovery
Attacks against HMAC and NMAC with Whirlpool Reduced to 7 Rounds. FSE 2014

9

Results in last 3 years

10

Attack Types Proven
Bound

Generic
Attacks

Recent
Result Remark

distinguishing-R l/2 l/2 [1,2] tight

distinguishing-H l/2 l/2 [1,2] tight

existential forgery l/2 l/2 [2] tight

selective forgery l/2 l/2 ~ l [5] hash
dependent

universal forgery l/2 3l/4 [4,5,6] gap

key recovery k 3l/4, l [3,5,7] TMD tradeoff

Pollard Rho Method

‣ node: value;  
arrow: function f, 
with xi+1 = f(xi)

‣ Two threads, one evaluate f
once at each step, the other
two f evaluations at each
step, collision will be
detected inside the cycle.

11

x0

x1

x2

x3

x4

x5 x6

x7

x8

Pollard Rho Method  
Detection - 0

12

x0

x1

x2

x3

x4

x5 x6

x7

x8

Pollard Rho Method
Detection - 1

13

x0

x1

x2

x3

x4

x5 x6

x7

x8

Pollard Rho Method
Detection - 2

14

x0

x1

x2

x3

x4

x5 x6

x7

x8

Pollard Rho Method
Detection - 3

15

x0

x1

x2

x3

x4

x5 x6

x7

x8

Pollard Rho Method
Detection - 4

16

x0

x1

x2

x3

x4

x5 x6

x7

x8

Pollard Rho Method
Detection - 5

17

x0

x1

x2

x3

x4

x5 x6

x7

x8

Pollard Rho Method
Locating - 0

18

x0

x1

x2

x3

x4

x5 x6

x7

x8

Pollard Rho Method
Locating - 1

19

x0

x1

x2

x3

x4

x5 x6

x7

x8

Pollard Rho Method
Locating - 2

20

x0

x1

x2

x3

x4

x5 x6

x7

x8

Pollard Rho Method
Locating - 3

21

x0

x1

x2

x3

x4

x5 x6

x7

x8

Pollard Rho Method
Locating - 4

22

x0

x1

x2

x3

x4

x5 x6

x7

x8

Pollard Rho Method

‣ Pollard Rho Method detects and finds collisions in
time O(2l/2) and memory complexity O(1), i.e.,
removes the memory requirement from the original
birthday attacks.

‣ Remarks:

- cycle-length: number of nodes in the cycle
- height: number of steps away from the cycle

23

Functional Graph

24

Trail Length (�) :
p

⇡N/8

Cycle Length (µ) :
p

⇡N/8

Rho Length (⇢ = �+ µ) :
p

⇡N/2

Tree Size : N/3

Component Size : 2N/3

f : N �! N is a random function

HMAC: Existential Forgery

‣ It is likely both cycles are the cycle of the largest component. 
L is the cycle length of the largest component.

25

HMAC: State Recovery
‣ Test for the smallest X (by a

binary division approach) such
that:  
M1 = r || [0]X+L || [1] || [0]2^l/2 

M2 = r || [0]X+0 || [1] || [0]2^l/2+L  

collide in tag, then the internal
state value after proceeding P =
r || [0]X is the root of the largest
tree, X is the height of state
after processing [r].

‣ Test tag collision between P ||
[M’] and [MS] for one-block M’
and MS to recover state for
short message, by testing
enough M’ and MS pairs -
unbalanced MITM.

26

Ms

M’P

HMAC: Universal Forgery
1. Offline phase: precompute

nodes with heights multiple of 2l/

4, and find the sets S1, S2, …,
S2^l/4 with each Si containing at
least i*2l/4 nodes of height 2l/4.

2. Online phase: given a message
[M], recover its height h in
functional graph [j*2l/4, (j+1) 2l/4),
compute the state value for
message x || [0]h-j*2^l/4 for all x
from Sj+1, check if it is indeed
the state for [M].

3. Time complexity 23l/4 for a given
message of 2l/4 blocks.

27

(j+1)*2l/4 j*2l/4

HMAC: Key Recovery

‣ The key recovery attack complexity is no longer bounded by the
key size, but the internal state size. Note HMAC accepts key
size of arbitrary long.

‣ With 2l pre-computation, Kin and Kout can be recovered in 23l/4.

28

HMAC: Key Recovery

1. set input to outer layer to
constant Xe, apply
Hellman’s trade-off to
recover Kout

2. recover the height of Kin,
the value as before.

3. Xe can be reached by
herding techniques.

29

Tagh

Kin

K
out

h

M

IV

K � ipad

C

IV

K � opad

C

set to Xe

HMAC: Other Results

1. State recovery and universal forgery for short messages

2. Selective forgery applicable to HMAC based on many hash
function standards

3. Improved applications to HMAC-Whirlpool from key recovery
for 6 rounds to 7-round equivalent-keys recovery.

30

6-round HMAC-Whirlpool

‣ (multi-)collision in inner
layer

‣ recover Kout,

‣ recover K from Kout using
preimage attack
techniques

31

Tagh

Kin

K
out

h

M

IV

K � ipad

C

IV

K � opad

C

multi- 
collision

knownto recover

7-round HMAC-Whirlpool

‣ known message block to
outer layer

‣ output is known as before

‣ recover Kout

‣ failed to recover K itself
because there is no 7-
round preimage attack in
this setting yet.

32

Tagh

Kin

K
out

h

M

IV

K � ipad

C

IV

K � opad

C

known: internal
state recovery

knownto recover

Open Problems

1. How to tweak HMAC to achieve n-bit security ? Or
is it even possible to have n-bit security ?

2. Is the birthday-bound tight for HMAC? I.e., Are
there generic forgery and key recovery attacks with
birthday complexities ?

3. Are these techniques useful for block-cipher based
and dedicated MAC designs ?

33

Thank you !

34

